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ABSTRACT

This report defines the fundamental parameters aj-
fecting the capacity of a soft-decision optical channel,
and relates them to corresponding parameters for the
well-understood A WGN channel. For example, just as
the performance on a standard additive white Gaus-
sian noise (A WGN) channel is fully characterized by
its SNR, a corresponding Webb channel is fully char-
acterized by its SNR, and a single additional skewness
parameter 62 which depends on the photon detector. In
fact, this Webb channel reduces to the standard A WGN
channel when 62 + cm,

Numerical results show that the capacity of M-ary
orthogonal signaling on the Webb channel exhibits the
same brick-wall Shannon limit (M in 2)/(M – 1) as on
the AWGN channel (= – 1.59 dB for large M), and that
soft output channels ofler a 3 dB advantage over hard
output channels.

I. INTRODUCTION

In an optical communication system using M-ary
pulse position modulation (PPM), the probability den-
sity function describing the number q of photons at the
output of an avalanche photodiode detector is accu-
rately approximated by [2]:

P(q)= 1 (1 + (q - Gn)(F - 1) -3/2

/z%Gm GFfi )

(

(q - Gii)2

)

–Gfi
. exp –

(
2nG2F 1 + (9-G:J:-1)

)
‘ ‘>F–l

(1)

where ii is the mean number of photons absorbed by
the APD, G is the APD gain, and F = k.ffG + (2 –
l/G) (1 – kef~) is an excess noise factor. The Webb
model for PPM signaling (here called Webb-2) uses the
density in Eq. (1) twice: once using the average number
iil of photons in the signal slot, and a second time using
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the average number fio of photons in the M – 1 non-
signal slots.

The Webb-distributed electron count q is conve-
niently represented in terms of a standardized (scaled-
and-t ranslated) Webb random variable w. Defining
q = m + WO, where m = Gii and o = I/~F”, the
probability density for the standardized Webb random
variable w simplifies to

p(w; 62) = *(1 + w/d) -3/2. -~2/2(l+~/J) , w > _~

(2)

where 62 = fiF/ (F – 1)2. Note that this standard-
ized Webb probability reduces exactly to a standardized
Gaussian when the parameter 62 --+ co.

If w is a standardized Webb random variable with
skewness parameter 62 and probability density given
by Eq. (2), then q = m + wo is a Webb random vari-
able with mean m, variance U2, and skewness 62, and is
denoted as W(rn, 02,62). The standardized Webb ran-
dom variable has zero mean, unit variance and can be
denoted w = W(O, 1, d2).

Our objective in this paper is to develop an under-
standing of the role of various optical parameters on
the capacity of an optical communication system, and
to this end we compute and compare the capacities of
various idealized channels which might be used to ap-
proximate the optical communication channel. We also
compare the capacities achievable with soft- and hard-
decision channel outputs.

II. CAPACITY OF PPM ON CHANNELS
WITH SOFT OUTPUTS

For each channel model we consider the com-
munication system shown in Fig. 1. The output
u = (U1,U2,.. . ,Uk) of a k-bit source is modulated
with (M = 2~)-ary PPM to yield a signal X =
(x~, xz,... ,X~). The capacity of A4-PPM is the same
as that of an orthogonal signal set with M codewords,
and of M-FSK.

The capacity of PPM modulation on the channel is
the maximum amount of information that can be trans-
mitted reliably and is given by C = maxP(X) 1(Y; X).
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Fig. 1. Model of PPM signaling.

The channel capacity with input signals restricted to an
IVf-ary orthogonal constellation C, and no restriction on
the channel output, is given by

c = ~ / +I)(ylx) log~
(

P(YIX)

XEC J’ )* ZXCCP(YI*) ‘y’ ‘3)

where y=(yl, . . . )“>YM 1sthe received vector. Because
of the symmetry of orthogonal signals and of the chan-
nels considered, capacity is achieved with an equiprob-
able M-ary source distribution, and Eq. (3) reduces to

where v is a random vector obtained from y via an
arbitrary invertible transformation. Uninspired com-
putation of the expectation of the right side of Eq. (4)
requires evaluation of an M-dimensional integral. Al-
ternatively, this M-dimensional expectation can be ac-
curately estimated via Monte Carlo simulation, at much
lower complexity.

A. Capacity of M-ary PPM on the Standard A WGN
Channel (A WGN-1)

In this case, the possible signals X are of the form
Xj = (Zjl? ..., ZjM) = (0,0,0, . . . ,na, O,... ,0) where
the nonzero signal value m is in position j. The trans-
mitted vector x is corrupted by additive white Gaussian
noise with zero mean and variance 02 in each compo-
nent:

{

Yj is iV(rn, 02) (signal present) (5)

Yz is N(O, a2), i # j (signal absent)

This is the model for any set of M-ary orthogonal sig-
nals, with energy per M-dimensional symbol ES = m2,
transmitted on an AWGN channel with two-sided noise
spectral density No/2 = a2. A symbol signal-to-noise
ratio (SNR) can be defined by p = m2/cr2 = 213~/lVo.

For the distributions in Eq. (5), we have

–X2/2. Defining ~j = yj/o, we ob-where ~(~) = &e
tain

(.?-(vj-@-.~+(vl-@ )/2P(vl%) = ~ , (7)
p(vlxl)

Using Eq, (7) in Eq. (4) we get an expression for the
capacity of orthogonal signaling on the AWGN- 1 chan-
nel

C(p)= lcvq M – -%1x, 1% 5exP [w~j - ~1)1 (8)
j=l

B. Capacity of M-ary PPM on a More General Gaus-
sian Channel (A WGN-2)

Now we extend the analysis to cover a “double Gaus-
sian” problem (here called AWGN-2), related more di-
rectly to the PPM optical model and characterized by
different means and variances depending on whether
the signal is present or absent:

{

Yi is N(rno, a;), i # j (signal absent)

Yj is N(ml,o?) (signal present), ‘g)

where ml > rno and o? > a~. By symmetry of the
orthogonal PPM signal constellateion, capacity can be
evaluated by Eq. (4). By straightforward algebra, it
follows that

~(3’lx.7’)= exp [(?Jf – U; – ~~ + ‘?)/21 (lo)
P(YIX1)

where Wj= (yj – mo)/oo and Uj = (yj – ml)/al, Define

‘Y = 4/~? and P = (ml – ~o)2/4” Then> given ‘1 ~
the {vj } are independent and distributed as

{

VI is N(@, l/v)
is N(O, 1), j # 1.

(11)
vj

In terms of the {vj }, the {uj} are determined by the
invertible transformation Uj = fi(vj – @. Thus, we
have Uj+Vj = Vj(W* 1) – @. Plugging into Eq. (4),
we obtain

C(p,’y) = log2 M – al., @2 5exP [’-W%’ - VI)
j=l

+(1 – ‘Y)(V; – v?)/2] . (12)

Note that this equation reduces to the standard
AWGN-1 capacity for orthogonal signals (Eq. (8)),
when ~ + 1.
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C. Capacity of M-ary PPikl on Webb-distributed Chan-
nels (Webb-1 and Webb-2)

The Webb-1 channel model simply substitutes Webb
random variables W (.,.,. ) for the Gaussian random vari-
ables N(.,0) in Eq. (5) for the AWGN-1 channel model:

{

Yj is W(rn,02,62) (signal present) ~13)

Yi is W(O, 02, 62), i # j (signal absent)

The conditional probability density functions are

Awl%) =
:p(~;’2)
1

‘(vilxj) = ()
;’ :;62 ,i+j,

where p(.; .) is given in Eq. (2). Thus, for the Webb-1
model,

P(Y1%) _ p(vj – ~; F)p(vl; 82)

P(YIX1) – P(VI – @ ~2)P(q;62)‘
(14)

where, as in the AWGN-1 channel, Vj = yj /o and p =
m2/a2. The capacity of the Webb-1 channel is given by
plugging into Eq. (4):

III. CAPACITY AS A FUNCTION OF
BIT-SNR

In the case of the classic AWGN-1 channel, the ca-
pacity formulas imply a well-known threshold on the
minimum required signal-t o-noise ratio (SNR) per in-
formation bit communicated over the channel. If the
AWGN-1 channel-SNR is E,/NO (per channel symbol),
the corresponding bit-SNR is computed as &/~1) =
(E,/No)/R (per information bit), where R (information
bits/channel symbol) is the rate of the overall code ap-
plied to the channel. If the rate is at the capacity limit,
then R = C, and the formula for the minimum possible
bit-SNR is (~b/~O)~in = (J?3~/No)/C.

To unify the treatment of each channel, we define a
minimum bit-SNR parameter pb = p/ (2C). Note that
this definition for the AWGN- 1 channel reduces to p~ =
(E~/lV())/C = (.E~/N())~i~.

A. The AWGN-1 Channel

Fig. 2 shows the AWGN-1 capacity as a function
of the minimum required bit-SNR pb = ~b/~1). It
also shows the ~b/~1) required for uncoded lf-PPM
to achieve bit error probability .P~ = 10-6, where

M p(vj – fi (F’)’(vi; (P’) l’b = ~fiPM, and the probability of uncoded sym-
C(p,6) = log2J’f – -EVlxl b2

z . bol error is
;=, P(V1 – W J%(vj; 62)~—.

(15)

The Webb-2 channel model substitutes Webb ran-
dom variables W (.,.,.) for the Gaussian random vari-
ables N(, O)in Eq. (9) for the AWGN-2 channel model:

{

yj is W(rnl,a~,J!) (signal present) ~16)

vi is W(mO, a~, d:), i # j (signal absent)

Following the same method as in Eq. (14), we have

P(Ylx.i) P(fi(q – W); m’(w; %) (17)
P(YIW) = P(fi(w – @; @P(vj; m ‘

where, as in the AWGN-2 channel, vj = (yj – mo )/~o ~

y = o~/o~ and p = (ml – mO)2/o~. The APD channel
imposes an additional constraint that o~/a~ = Jj /d~.
Using this constraint and defining A = d; – d;, the
capacity of the Webb-2 channel is given by plugging
into Eq. (4):

C(p, ‘y,A) = log2 M

(18)

pM=l– Im 4 (Z- ~) @(z)”-’dz (19)
—co

where Q(z) = ~~m ~(u)du. Fig. 2 illustrates the pos-
sible improvements to be gained by using coding on
M-PPM. This figure also shows, for each M, the capac-
ity limitation imposed by restricting the M-dimensional
signaling set to be the orthogonal set. The exact com-
putation of C for larger dimensions is extremely com-
plex and it is necessary to resort to Monte Carlo meth-
ods as described in [5, Appendix I].

For Lf-PPM on an AWGN-1 channel, both the un-
coded probability of symbol error and the capacity
in Eq. (8) are functions of the single parameter p =
m2/Q 2. This is a statement of the well-known fact that
the AWGN-1 channel is fully characterized by its SNR.

B. The AWGN-.2 Channel

The AWGN-2 channel capacity can be obtained by
Monte Carlo simulation of Eq. (12). For brevity we omit
a plot of it here. The probability of uncoded iW-PPM
symbol error is given by

PM = l–
r
_w 4 (W(Z - /22) @(z)”-ldz (20)
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Fig. 2. PPM capacity on AWGN-1 channel, determined
from Eq. (8).

Note that when y + 1 and rno + O, the AWGN-2
channel becomes the AWGN-1 channel, and Eq. (20)
reduces to Eq. (19).

For Lf-PPM on an AWGN-2 channel, both the un-
coded probability of symbol error and the capacity in
Eq. (12) are functions of the parameters p = (ml –
rno)2/o~ and -y = o: /cJ~. This is a statement that the
AWGN-2 channel is fully characterized by its SNR and
the ratio of the variances.

C. The Webb Channels

We evaluated the M-dimensional expectations in (8),
(12), and (18) accurately via Monte Carlo simulation.
Some results are plotted in Fig. 3 for the AWGN-1 and
Webb-2 channels for different PPM orders lb!. Along
each Webb-2 curve, the two independent variables held
constant are A = 60.8 and p~/(1 – -y) = 17.6, which
correspond to a representative optical APD problem
with qn~ = 38 detected signal photons per PPM word
and an excess noise factor F’ = 2.16. The results show
that the capacity of Ikl-ary orthogonal signaling on
the Webb channel exhibits the same brick-wall Shan-
non limit (Al ln2)/(Ll – 1) as on the AWGN channel
(R –1.59 dB for large M). (When translated from an
M-ary orthogonal to an M-ary simplex signal set, each
curve would have a brick wall at -1.159 dB. ) A compar-
ison of hard- and soft-output Webb-2 channels is shown
in Fig 4, where a 3dB gain is seen for the soft channel.

-1.59 dB

Fig. 3. Capacity of AWGN-1 and Webb-2 channels for dif-
ferent PPM sizes.

.,
.2 -101234 5678910

Pb, ~B

Fig. 4. Capacity of 256-PPM on the hard- and soft-output

Webb-2 channels.

IV. COMPARISON OF CAPACITY
RESULTS WITH ACTUAL CODE

PERFORMANCE

Fig. 5 shows the performance of Reed-Solomon (RS)
codes on GF(2~) applied to 2k-PPM for pb = 10–6. For
each curve the alphabet size is fixed and therefore the
Reed-Solomon codeword size is fixed at (2~ – 1) k-bit
symbols. The curves are obtained by varying the code
rate within each RS code family. For these curves, the
RS decoder is assumed to correct only errors (i.e., no
erasures), and the uncoded symbol error probability is
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Fig. 5. RS code performance compared to PPM capacity.

given by Eq. (19) with Ill = 2k. As an example, the
performance of the (255,223) RS code, with code rate
approximately 7/8, is plotted at approximately 7 bits
per channel use on the 8-bit RS curve in Fig. 5. This
code requires 2.6 dB for ~b = 10–6, and is only 1.8 dB
worse than the capacity limit achievable by arbitrary
codes of the same rate for 256-PPM (see gap marked
with “B” in Fig. 5). The additional gap, marked as
“A”, is due to constraining the 256-dimensional signal
set to be orthogonal. Note that the comparison between
the performance of RS codes and the two capacity lim-
its does not account for the fact that the RS decoder
uses hard quantized inputs while both capacity limits
are computed for unconstrained channel output. This
limitation must account for some portion of the non-
opt imality of RS codes. Another interesting observa-
tion from Fig. 5 is that RS codes appear to be optimum
approximately at rate 3/4 for all alphabet sizes. Lower-
rate RS codes have progressively worse performance.

Some results are available on simple binary turbo
codes of rate 1/2 and 1/3 compared to RS codes of the
same rate.1 (See also [4].) These results indicate that,
while these binary turbo codes do outperform RS codes
of the same rate, there still remains a gap of several dB
to the capacity limit.

1~~Data Compression and Channel Coding”, X2000 Report,

JPL, Sept. 15, 1997.

V. CONCLUSIONS

This paper has analyzed channel models that can be
used to approximate an APD-detected optical commu-
nication channel. We were able to define a suitable
bit-normalized SNR parameter pb such that all of these
channels with soft outputs yield brick-wall thresholds
on the minimum acceptable value of pb above which reli-
able communication is theoretically possible and below
which it is not possible. Furthermore, under all of these
models with soft channel outputs, the bit-SNR thresh-
olds for different values of Ill differ from each other by
the “simplex-to-orthogonal penalty” ~. Under both
the AWGN-2 and Webb-2 models, the gap between the
capacities of hard- and soft-output channels is about
3 dB at the code rate giving the optimum hard-output
bit-SNR. On the hard-output channels, there is an op-
timum Al beyond which capacity is diminished because
much of the small incremental information available
from each slot is destroyed when all of that informa-
tion must be summarized as a single decision among an
increasing number of candidate slots. This contrasts
sharply with the results for soft decisions, for which
larger ill gives uniformly better capacity under each
model.
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